
ITERATION OF TRIANGULAR MATRICES 651 

5. D. H. LEHMER, "Tables concerning the distribution of primes up to 37 millions," 1957, 
copy deposited in the UMT File and reviewed in MTAC, v. 13, 1959, p. 56-57. 

6. A. E. WESTERN, "Note on the magnitude of the difference between successive primes," 
J. London Math. Soc., v. 9, 1934, p. 276-278. 

7. J. W. L. GLAISHER, "On long successions of composite numbers," Messenger of Mathe- 
matics, v. 7,1877, p. 102, 171. 

8. KENNETH I. APPEL & J. BARKLEY ROSSER, Table for Estimating Futnctions of Primes, 
IDA-CRD Technical Report Number 4, 1961, p. 102. (Reviewed in RMT 55, Math. Comp., 
v. 16, 1962, p. 500-501.) 

9. D. B. GILLIES, "Three new Mersenne primes and a statistical theory," Math. Comp., 
v. 18, 1964, p. 93. 

10. KARL PRACHAR, Primzahlverteilung, Springer, Berlin, 1957, p. 154-164. 

Iteration of Triangular Matrices 

By Lester J. Senechalle 

1. Introduction. In order to calculate scalar functions of a matrix A, it is de- 
sirable to have a simple formiula for the integral iterates A' of A. Such a formllula 
was first discovered by Sylvester [1], who expressed A' as, essentially, a divided 
difference of the function f(x) = x'. However, Sylvester's formula applies only to 
the case where the eigenvalues of A are distinct; the case of multiple eigenvalues 
was subsequently treated by Buchheirn [2], and leads to confluent divided dif- 
ferences. 

In this paper we give an especially simiiple formula for A' when A is an upper 
triangular matrix. Our algorithmii yields only the upper right hand entry of A', 
but this is adequate since every nonzero element of A' is in fact the upper right- 
hand entry of the nth iterate of some triangular submatrix of A. 

2. Notation. Let [ai] be an in X in upper triangular matrix, so that a, 0 
if i > j, and for any nonnegative integer n let [a n)] denote the nth iterate of [aij] 
under matrix multiplication. The matrix [aj 7] is also upper triangular. Mloreover, 
[a(?)] = [b6j], and [a.n+i)] = [Z=1 a() ak]] 

If (X1, , Xk) is a chain of complex numbers, then C(X1, , Xk) denotes the 
set of all subehains which have X1 as their first element and Xk as their last element. 
If k > 2 and i < k, then Ci(X X, ... , X,) denotes the set of chains belonging to 
C(X1, *... , Xk) which have Xi as their next to last element. Thus C(X1, - , SXk) = 

U7jIl CQ(X1, Xk ) is a decoitiposition of C(X1, , Sk) into mutually disjoint 
subsets. For examiiple, C(X1, X2, X3, X4) = {(X1, X4), (X1, X2, X4), (X1, X3, X4), 

(Xl, X2, X3, X4)} and C3(X1, X2, X3, X4) = {(X1, X3, X4), (Xl, X2 X3 4) I 

If -y = (X X , SXk) is a chain of distinct complex numbers and n is a nonnega- 
tive integer, then qf,(-y) denotes the divided difference [X1 ... XkJ of the function 
f(x) = xn [3, Chapter 1]. Thus 

k Xi 

qn(-Y) -E k i 

i=1 fi (xi- x) 

In particular, q,n(-y) = 0 for 0 _ n < k, and qn( Y) = Xln if _y = (X1). Furthermore, 
if k > 2, qn/(-y) is defined as qn(y'), where y' = (X1, , Xk-1) 
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If [aij] is an m X m upper triangular matrix with eigenvalues X = ai 1 < i < m, 
and if y = (Xl = Xil, Xi2 , * * Xis = sm) s 2, is in C(Xl Xm) then wy() 
denotes the product ai,i2ai2i3 

.. ai,-_i8 . For example, if 

m=6 and e= (X1,X3,X5,X6), 

then r(-y) = an3a:M5aH6. For each one-element chain y, we define r(-y) = 1. 

3. Iteration of Triangular Matrices. 
LEMMA. If -y = (Xi, ... , Xk), k > 2, is a chain of distinct complex numbers and 

if n is a nonnegative integer, then qn' (Y) + Xkqn(Y) = qn+l(Y). 
Proof. 

k-1 (Xi k , k-1i i 
qn+li(7) - Xkq(7) = Z k = E k-1 = q' (y) 

i= I H (Xi _ xj) i=l H (Xi-xj) 
j=l;jqAi j=l;j#i 

THEOREM. Let [aij] be an m X m upper triangular matrix with distinct eigenvalues 
'X = aii, 1 ? i < m. Then for each nonnegative integer n, 

aim = E 
Z 

X( Y) n(Y) 
YE C (Xi," , Xm) 

Proof. If m = 1, we have ZEYc(Xi) 7r(Y)qn(Y) = Xi', which is clearly all 
Suppose that m > 1 and that the theorem holds for matrices of order less than 

m. We show by induction on n that the theorem holds for matrices of order m. 
Since qo(y) = 0 for each y in C(Xi, , Xm) we have the result for n = 0. 

Now assume the theorem for n. Then 

(n+i) _ ' (n alm = E 
n) aj13a, 

j=l 
m-1 

= E ajm E ir(Y)gn(Y)') + Xm E lr(Y)qn(Y) 
j=l Y E C (Xi, -,X) / E eC (Xi, -,Xm) 

m-1 

=E E r(^Y)n (-Y)) + )\m E r(-Y)qn(^Y) j=l 'YEC (Xi, '.Xm) ) Y YECC(Xi,-,Xnm) 

= Z irQy (Y)[qn'(Y) + Xmqn(Y)] 
Y E C (Xi, --- n) 

= ZE r('Y)qn+l(Yi), 
'YEC (Xi, -XrnB) 

so that the theorem holds for n + 1 and the proof is complete. 

4. Extensions. The iteration theorem may be extended immediately to the case 
where the matrix has multiple eigenvalues. We need only regard such matrices as 
limits of those with distinct eigenvalues, and hence replace qn(y) in the formula 
for a(n) by a confluent divided difference [3, p. 12-14]. 

The theorem may also be extended to the case where n is negative and the 
eigenvalues are nonzero. In fact, the lemma is immediate and only minor altera- 
tions are needed in the inductive proof of the theorem. 
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On the Evaluation of Certain Determinants 

By Jean L. Lavoie 

1. Abstract. Using the properties of the generalized Hilbert matrix and familiar 
results from the theory of hypergeometric series, we evaluate the determinants of 
certain matrices whose general terms are known explicitly. In certain cases it is 
even possible to find the analytic expression for the general terms of the inverses. 

2. Introduction. In this paper the matrices used are always assumed to be 
n-square and i and j to be positive integers such that 1 ? i, j _ n. 

The following elementary properties of determinants will be used: 
(I) If K multiplies all the elements in a row (column) of a determinant it multi- 

plies the value of the determinant; 
(II) the determinant of a triangular matrix is equal to the product of the n 

terms along the main diagonal; 
(III) if A and B are two matrices then det(AB) = det(A) det(B). 
We shall also need Gauss's theorem [1, Theorem 18, p. 49] 

(1) 2F1 (a b 1 1 (c)P(c - a - b) 
21 c / P(c -a)I'(c -b)' 

and the two following formulas, respectively from [1, example 3, p. 69] and [2, 
equation 8]: 

/1-a, aa1\ 21-F2(1/2)F(c) 
(2) 2FV( 

and 
/1 n,rt p + l, p + 1nFp+1 

(3) 3F2( + 1) = (-1 )n+l(p + j) r(n + p +1) 

p + +1, p / P(++1 

for j and n positive integers, 1 < j < n, p 0 -1, -2, * ,-(2n - 1). 

3. Preliminary Results. Let al, a2, . . , an ; bi, b2, * , bn be 2n distinct but 
otherwise arbitrary complex numbers. Then it is well known [3, example 3, p. 98] 
that the determinant of the matrix H = (hi), hij = (ai + bj)y1 is 

1,2,- .,n 

II (a, - ak)(br - bk) 

det(H) = >12 . 

fl (ai + bj) 
i,j 
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